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Chapter 1

Errata

Listed in this document are all errors known to the author in the
Birkhäuser publication of his book Soft Solids: A Primer to the Theo-
retical Mechanics of Materials published in 2014.

To the reader: If you come across a typo or a more serious error in Soft
Solids, please forward it to me. Your efforts will be greatly appreciated.
You may contact me via email at afreed@tamu.edu.

Chapter 1
1) Students have suggested that homework problem 1.4.3, Extension Fol-
lowed by Simple Shear, would be more intuitive if the assigned coordinate
frame corresponded with simple shear, as put forward in 1.3.3, instead of
uniaxial extension, as established in 1.3.1. To accommodate this request,
the motion published in the book as

x1 D �X1; x2 D 
�X1 C �
�n X2; x3 D �

n�1 X3 (1.36)

whose inverse motion is given by

X1 D �
�1 x1; X2 D �
�

n x1 C �
n x2; X3 D �

1�n x3 (1.37)

should be replaced by

x1 D �
�n X1 C 
�X2; x2 D �X2; x3 D �

n�1 X3 (1.36)

whose inverse motion is given by

X1 D �
n x1 � 
�

n x2; X2 D �
�1 x2; X3 D �

1�n x3: (1.37)

with Fig. 1.11 in the book being replaced by the following figure, and with
the text immediately following Eq. (1.38) being replaced by “where the
specimen’s height aligns with the 2-direction and its width aligns with the
1-direction: : :”.
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Fig. 1.11 Juxtaposition of an extension followed by a simple shear. Here `0,
w0, and d0 are the dimensions of length, width, and depth of a gage section that
is first extended to a rectangular prism with dimensions `, w, and d , and later
sheared by some extent 
 .

Chapter 2
1) The paragraph of discussion following Eq. (2.4.2) is flawed. What ap-
pears in the book as

By definition r � r D 1 and, therefore, 2 r � Pr D 0 that,
from Eq. (2.41), requires r �A�1.!� P� r/ D 0. But it can
be shown that r �A�1 D csc.�/ r ¤ 0, which reflects the
singularity of A present at � D 0, while r �A D sin.�/ r .
Consequently, it is sufficient to require .! � P� r/ D 0
to ensure r � A�1.! � P� r/ D 0, thereby producing the
anticipated result

! D P� r ) P� D r �! D k!k with r D
!

k!k
(2.43)

which enables the rotation tensor R to be quantified via
Eq. 2.39). To the best of the author’s knowledge, ! D
P� r has been suggested in the literature, but not rigorously
proven.

The axis of rotation r cannot be oriented in an absence
of rotation, viz., whenever P� D k!k D 0. : : :



Errata 5

would be better explained if replaced by

By definition r � r D 1 and, therefore, 2 r � Pr D 0 imply-
ing that vector Pr lies orthogonal to unit vector r . It can be
easily verified that r � A D sin.�/ r . Consequently, con-
tracting the formulæ in Eq. (2.41) from the left by r leads
to a pair of differential equations that one must solve, viz.,

P� D r �! and Pr D A�1
�
! � .r �!/r

�
(2.43)

which describe the evolution of rotation R via its angle �
and axis r of rotation. Here matrix A�1 has components

ŒA�1�11 D
�
1C r 21 C .1 � r 21 / cos �

�
=2 sin � (2.44a)

ŒA�1�12 D
�
r3 sin � C r1r2.1 � cos �/

�
=2 sin � (2.44b)

ŒA�1�13 D �
�
r2 sin � C r1r3.1 � cos �/

�
=2 sin �

(2.44c)

ŒA�1�21 D �
�
r3 sin � C r1r2.1 � cos �/

�
=2 sin �

(2.44d)

ŒA�1�22 D
�
1C r 22 C .1 � r 22 / cos �

�
=2 sin � (2.44e)

ŒA�1�23 D
�
r1 sin � C r2r3.1 � cos �/

�
=2 sin � (2.44f)

ŒA�1�31 D
�
r2 sin � C r1r3.1 � cos �/

�
=2 sin � (2.44g)

ŒA�1�32 D �
�
r1 sin � C r2r3.1 � cos �/

�
=2 sin �

(2.44h)

ŒA�1�33 D
�
1C r 23 C .1 � r 23 / cos �

�
=2 sin � (2.44i)

that possesses an obvious singularity at � D 0.
The axis of rotation r cannot be oriented in an absence

of rotation, viz., whenever � D 0 and! D 0. : : :

As a consequence, Alg. 2.2 needs to be reworked—this is an outstanding
action item.

Chapter 3
1) The discussion of Hencky strain in §3.2.1 is wrong, because the expo-
nential of a matrix product equals the product of the matrix exponentials
only when the matrices commute, and RU does not commute, in general.
Therefore, replace the block of text found in the book
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One often hears of the terminology ‘true strain,’ a strain
measure explored and developed by Hencky [1928, 1931]
whose conceptual origin he attributes to Ludwig. It is
a logical 1D strain measure, but it is not a practical 3D
strain measure. Hencky strain is defined as EH D lnU

with an associated rotation tensor of RH D lnR because
lnF D ln.RU / D lnR C lnU D RH C EH . These
deformation fields are presented here only for the purpose
of informing the reader about their existence. Taking the
logarithm of a matrix is not easily done [Fitzgerald, 1980],
nor is taking its rate [Hoger, 1986]. Its inverse operation,
however, is described by a well-behaved convergent se-
ries: the exponential of a matrix. Specifically, one can
write the identities5

U D exp .EH / D I CEH C
1
2
E2
H C

1
6
E3
H C � � � ;

U�1 D exp .�EH / D I �EH C
1
2
E2
H �

1
6
E3
H C � � � ;

R D exp .RH / D I CRH C
1
2
R2H C

1
6
R3H C � � � ;

R�1 D exp .�RH / D I �RH C
1
2
R2H �

1
6
R3H C � � �

(3.18)
from which one derives a useful pair of approximations

1
2

�
U � U�1

�
D EH C O

�
1
3
E3
H

�
;

1
2

�
R �R�1

�
D RH C O

�
1
3
R3H

� (3.19)

that provide third-order accurate estimates for EH and
RH . Obviously, Hencky strain is a mixed tensor field
[Freed, 1995], because U and U�1 are both mixed ten-
sor fields.

with the following block of text

One often hears of the terminology ‘true strain,’ a strain
measure that originated with Becker [1893], cf. Neff et al.
[2014], which was later rediscovered and developed by
Hencky [1928, 1931]. It is a logical 1D strain measure,
but it is not a practical 3D strain measure [Freed, 2014].
Hencky strain is defined as EH D lnU . This deformation

5This clever formulation was shown to the author many years ago by Prof.
Arkady Leonov. The author has not seen it published in the literature.
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field is presented here only for the purpose of informing
the reader about its existence. Taking the logarithm of a
matrix is not easily done [Fitzgerald, 1980; Freed & Srini-
vasa, 2015], nor is taking its rate easily calculated [Freed,
2014; Hoger, 1986]. Its inverse operation, however, is de-
scribed by a well-behaved convergent series: the exponen-
tial of a matrix. Specifically, one can write the identities5

U D exp .EH / D I CEH C
1
2
E2
H C

1
6
E3
H C � � � ;

U�1 D exp .�EH / D I �EH C
1
2
E2
H �

1
6
E3
H C � � � ;

(3.18)
from which one derives

1
2

�
U � U�1

�
D EH C O

�
1
3
E3
H

�
; (3.19)

which is a useful, third-order, accurate estimate for EH .
Obviously, Hencky strain is a mixed tensor field [Freed,
1995, 2014], because U and U�1 are both mixed tensor
fields.

which also attibutes the origin of logarithmic strain to Becker, whose lost
work was rediscovered shortly after the book went to press.

Chapter 4
None known.

Chapter 5
None known.

Chapter 6
Equations (6.81 & 6.82) are in error by a factor of 2. They should read

ten.aaa/ D
1

E

2664
1 0 0 ��

0 1C�=2 1C�=2 0

0 1C�=2 1C�=2 0

�� 0 0 1

3775

�
ˇ

2E

2664
2e11 e12 e12 0

e12
1
2
.e11 C e22/

1
2
.e11 C e22/ e12

e12
1
2
.e11 C e22/

1
2
.e11 C e22/ e12

0 e12 e12 2e22

3775 (6.81)

5This clever formulation was shown to the author many years ago by Prof.
Arkady Leonov. The author has not seen it published in the literature.
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and

ten.bbb/ D �
ˇ

2E

2664
2s11 s12 s12 0

s12
1
2
.s11 C s22/

1
2
.s11 C s22/ s12

s12
1
2
.s11 C s22/

1
2
.s11 C s22/ s12

0 s12 s12 2s22

3775 (6.82)

Chapter 7
None known.

Appendix A
None known.

Appendix B
None known.

Appendix C
None known.

Appendix D
1) There is a typo in Table D.3 in location U12. What was reported as 0.25
should read 0.025. The corrected table is published below.

Appendix E
None known.

Appendix F
None known.
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